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Abstract We show that the discretized forms of the Schriidinger and the Dirac equations 
for an arbitrary potential in one dimension are equivalent to the Poincar6 map of the 
corresponding wave equation for an array of S-function potentials. Therefore, the dynamics 
of particles in general periodic potentials may be studied by means of an equivalent 
generalized Kronig-Penney model, in which there exist several S-function potentials in 
each unit cell. Taking into account the techniques of dynamical systems, the transfer matrix 
method is then used in a simple form to compute the energy band edges and the dispenion 
law inside the allowed bands. 

1. Introduction 

One-dimensional physical models (Lieb and Mattis 1966, Bernasconi and Schneider 
1981, Albeverio etall988, and references therein) play an important role in understand- 
ing the quantum mechanics of electrons in perfect and non-perfect lattices. Some 
important concepts in electron dynamics in periodic lattices, such as Bloch states and 
the occurrence of energy bands and gaps, as well as in disordered lattices, such as 
localization and the existence of mobility edges, are now well understood with the aid 
of one-dimensional models. Of course, these models are far from giving a complete 
account of the number of situations occurring in real crystals. Some limitations are 
not directly related to the dimensionality of the problem but to the potential model 
used in describing the electron interaction with the crystal. It is clear that an array of 
square-well or &function potentials (Kronig and Penney 1931) is a crude picture of 
the electron interaction with other electrons and atoms in a solid. One method to 
overcome this difficulty is to use non-local separable potentials, which admit exact 
solutions for an arbitrary potential shape (Domhguez-Adame et al 1991, Domhguez- 
Adame and Gonzilez 1992). Moreover, numerical solutions of the wave equation 
corresponding to a general periodic potential give accurate results when analytical 
solutions are absent. At present there exist numerical methods for one-dimensional 
band calculations based on the discretized Schrodinger (Vigneron and Lambin 1979) 
and Dirac equations (Mtndez and Domfnguez-Adame 1991). These methods use a 
continued fraction approach to compute the energy band edges and dispersion relations 
inside the allowed bands. 
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The aim of this paper is to present an alternative numerical method to study the 
dynamics of non-relativistic and relativistic electrons in one-dimensional potentials. 
We will show that the discretized forms of the Schrodinger (section 2) and Dirac 
equations (section 3) can be replaced by the PoincarC map associated with the corres- 
ponding wave equation for an array of &function potentials, within the same truncation 
error as that of the original discretization scheme. In the case of general periodic 
potentials, the problem is equivalent to the generalized Kronig-Penney or Dirac- 
Kronig-Penney models with the same period as that of the original potential. This 
replacement will allow us to use the transfer matrix technique for the computation of 
the dispersion law. Some numerical results are presented in section 4; the convergence 
of the method is discussed and non-relativistic and relativistic band structures are 
compared. The main conclusions of the present work are drawn in section 5. 

2. Non-relativistic electrons in periodic potentials 

We start with the one-dimensional Schrodinger equation for steady states (fi = 2m = 1) 

V(x) being a general potential. Let us divide the interval [4 b]  into N + 1 equal parts 
oflength h=(b-a) / (Nt l ) ,whichdef inesthegridx ,=nh+u ( n = O , l ,  ..., N t l ) .  
The discretized form of ( 1 )  at any point of the grid is 

with a truncation error proportional to hZ. Here $" = $(x.) and V,, = V(x.). In the 
case of periodic potentials satisfying the condition V(x) = V(x + L),  L being the period, 
we take U = 0 and b = L so that [0, L] denotes the unit cell of the crystal. Since the 
Bloch theorem must be satisfied, the wavefunction is of the form $ ( x t L ) =  
exp(ikL)$(x) and the boundary condition for the difference equation reads 

$*+I + $n-t =(2- h2E + h2Vn)@" (2) 

$ n + N + I  =ex~(ikL.)$~.  (3) 
In order to solve (2) and (3) we consider a periodic array of equally spaced 

8-function potentials, and let h be the distance between nearest-neighbour sites. The 
interaction of an electron of mass m = $  with this potential obeys the following 
Schrodinger equation 

where A. is the potential strength of the nth site. We can now use the techniques of 
dynamical systems proposed by Bellisard el al (1982) to construct the PoincarC map 
associated with (4), obtaining 

$"+ ,+$ . - ,= [2cos (h~)+h ,  s i r ~ ( h f i ) / f i ] $ ~ .  ( 5 )  
$" = $(x.)  is well defined since $(x) is a continuous function at the points where the 
8-function potentials are located, although its derivative is discontinuous. We stress 
the fact that nothing has been lost when passing from (4) to ( 5 ) ,  and (5) contains all 
the band structure information. In the limit h + O ,  when &function potentials are 
closely spaced, (5)  reduces to 

$ n + i +  $n-i=(2-h2EfhAn)$n (6) 
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with a truncation error of the order of h Z .  This approximation becomes valid provided 
that h a < <  1. We note that ( 6 )  is equivalent to our original problem (2) if we take 

A.=hV.. (7 )  
Therefore, the strength of the nth 8-function potential depends on the value of the 
periodic potential V ( x )  at the nth site. Since V,,,,, = V,,, the array of S-function 
potentials in (4) becomes periodic of period h( N + 1) = L and the boundary condition 
(3) also applies to (6 ) .  

The equation (4) corresponds to a Kronig-Penney model for a polyatomic crystal, 
the so-called generalized Kronig-Penney model (Roy and Bhattacharya 1969, Eldib 
et al 1987). Each 'atom' of the unit cell [0, L ] ,  represented by a S-function potential, 
is separated an equal distance h apart from its nearest neighbours. Instead of (4), we 
use equation (6 )  since it gives the same results with an error of the order of h2, which 
is the same error of passing from ( 1 )  to ( 2 ) .  One can find the dispersion relation of 
the generalized Kronig-Penney model by means of the transfer matrix technique, in 
analogy to the usual tight-binding model. In ( 6 )  the hopping energy between nearest 
neighbours is constant, so we are dealing with a diagonal tight-binding model. In that 
case, the transfer matrix takes a simple form 

with det(P,) = 1 .  Iterating ( 8 )  and using the boundary condition (3) we find 

where T N + ,  is the transfer matrix for the unit cell. Requiring the determinant to vanish 
for non-trivial solutions we get 

cos(k.L)=$Tr(T,,+,)= F , + , ( E ) .  (10) 

The required symmetry of the dispersion relation E ( k )  = E ( - k )  is conserved. Real 
values of k give the dispersion relation inside the allowed bands, whereas the energy 
band edges are computed through the condition IFN+,(E)I = 1 .  The trace of the transfer 
matrix may be calculated recursively. Starting from the fact that TN+, = TNPN+, , we 
find the following recurrence relations for the diagonal terms of the transfer matrices 

( T N + I ) I I  =(2+ A N + I ~  - h 2 E ) ( T , ) i I - ( T N - i ) i i  ( 1 l a )  

(TN+I)Z= (2+hNh -hzE)('CN)z2-(TN-i)z (116) 
with the initial conditions (To) l l=(To)z~=l ,  ( T I ) , , = 2 + A l h - h Z E  and (T,),,=O. If 
we restrict ourselves to the case of smooth potentials and small h, the following 
approximated recurrence relation for F . + , ( E )  is valid 

FN+,(E) = (2+hN+ih -h2E)F,v(E)  -FN-I(E) ( 1 2 )  

where now the initial conditions are F , ( E ) = l  and F l ( E ) = l + h l h / 2 - h 2 E / 2 .  

3. Relativistic electrons in periodic potentials 

In this section we aim to show that the above treatment may he generalized for Dirac 
electrons. Let us consider the one-dimensional Dirac equation for an electron of mass 
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m =$ in a periodic potential V(x) of period L. In units h = e =  1 we write 

(13) 

where +(x) is the two-component wavefunction, 01 and p are 2 x 2  traceless, Hermitian 
matrices with square unity, and E R  is the relativistic energy of the electron. To solve 
the Dirac equation we set the representation a = uz and p = ux, us being the Pauli 
matrices. Defining E = ER -4 and denoting by + and ,y the upper and lower components 
of the wavefunction, respectively, we obtain 

[-ia-+ip+ d ~ ( x ) ] + ( x ) = ~ , + ( x )  
dx 

+(x) 1 
(15) 

d2 - t V’(x) t E ( E  + 1) -(2E + I)V(x) -i- [ dx’ dx 

We restrict ourselves to a smooth potential hereafter, so we neglect the term d V/dx 

(16) 

in (15) .  The discretrized version of (15) reads as follows 

=[2-hz(v: t E ( E +  1)  - (2E+ I)V.)]+”. 

Since V,,,,,, = V, the Bloch theorem holds and leads to 

&+N+I = exp(iW+, (17) 

and (14) ensures that ,y is also a Bloch function. 

periodic array of &function potentials 

[ dx  

Following the same procedure as before, we consider the Dirac equation for a 

(18) 
n I d 

-iu,-t$u, t x  A.S(x - nh)  +(x) = ( E  + i ) + ( x ) .  

Taking into account that the appropriate boundary condition for a (electrostatiolike) 
&function potential located at x. reads (McKellar and Stephenson 1987, Domfnguez- 
Adame and Macii 1989) as 

+(x~)=(co~h, - iu~s inA\ . )+(x , )  (19) 
we have obtained the Poincar6 map associated with (18) in the representation we have 
chosen 

+.+l+exp(ih -iAn-l)+n-l 
=[2cosA. cos(JE(E+l)h)  

+ (zE+I )   sin^, s i n ( d ~ f i ) / J ~ I + .  (20) 

where +n = +(n-h)  (note that +(x) is not continuous at x =  nh, according to (19)). It 
is worthwhile mentioning that (20) gives the same band structure as (18). In particular, 
in the case with A. =A, the whole band structure of the Dirac-Kronig-Penney model 
(MCndez and Dominguez-Adame 1992) is recovered. In the limit h +O and for smooth 
potentials (A./A.-,<c 1 )  we have 

+ “ + I +  &-I  = [ 2 - ( A t + E ( E +  l ) h 2 - ( 2 E +  1)Anfi)]&. (21) 

Hence (21) becomes equivalent to (16) by the substitution A, = hV.. As occurs in the 
non-relativistic case, the periodic boundary condition (17) also applies to (21). Note 
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that (21) reduces to (6) in the non-relativistic and weak coupling limits, as E << $ and 
V,, << $. Equation (18) corresponds to the so-called generalized DiraoKronig-Penney 
model (Dominguez-Adame 1989), in which there are several ‘atoms’ in the unit cell 
[0, L] .  This model is also exactly solvable and we can again use the transfer matrix 
technique. 

Following the same procedure as before, we find that the dispersion law is also 
given by (lo), but now the diagonal elements of the transfer matrices obey the following 
recurrence relationship 

(T,+i)i i  =[~+(~E+~)AN+~~-E(E+~)~’-AZ,+I~(T,)I~-(T,-~)I~ (22a)  

( T,+i)a [2 + (2E + 1 (226) 

with the initial conditions (To)ll = (T& = 1, = 2 + ( 2 E  + l)A,h - E ( E  + l)h2 - A: 
and (Ti),, = 0. For large N values we find that FNCi( E )  may be approximately evaluated 
from the relation 

FN+i(E) [ 2 + ( 2 E +  l ) A N + l h  - E ( E  + l)h’-AZ,+i]FN(E)-FN-l(E) (23) 

with & ( E )  = 1 and F , ( E )  = 1 +(E+f)A,h-  E ( E  + l)h2/2-A:/2. 

- E  ( E  + 1) h2 -A&]( TN )22 - ( T,-i)22 

4. Numerical results 

As an example of this method, we have studied numerically the Mathieu potential 

V ( x )  = v, cos(2m/l)  

for both non-relativistic and relativistic particles of mass m = 0.5. We take L = T 

hereafter. The Schrodinger equation for the Mathieu potential is exactly solvable, so 
we can use the analytic solutions to check the numerical solutions. Unfortunately there 
are no analytical results in the case of the Dirac equation. We have found in our 
studies that good accuracy is obtained even if a small number of grid points is used 
( N  = 50 or 100). Comparison of non-relativistic band limits produced by applying (10) 
and ( 1  1) with exact results is presented in table 1 when V, = 2. Notice that results are 
improved by means of the Richardson extrapolation formula, where the corresponding 
energy value is given as (4E(2N) - E ( N ) ) / 3 ,  E ( N )  being the value obtained with N 
subdivisions in the interval (in our case we have taken N = 300). In the case of the 
Dirac equation accurate results are also usually found taking about 50-100 grid points. 
However, the number of these points has to be greater to calculate the dispersion 
relation for higher bands. Figure 1 shows the dispersion relation for both non-relativistic 

Table 1. Band limits for a non-relativistic particle of mass m = 0.5 in the potential V ( x )  = 
V, MS 2.5 with V, = 2. N indicates rhe number of grid points. Energy values obtained by 
the Richardson rule are also shown. Exact values are based on the analytic properties of 
the Mathieu solutions. 

N=50 N=300 N = 600 Richardson Exact 

Upper band 3.911446 3.916865 3.916986 3.917026 3.917017 
1.858 290 1.859084 1.859 102 1.859 108 1.859 107 

Lower band -0.110874 -0.110266 -0.110253 -0,110249 -0.110249 
-0.455 660 -0.455 153 -0.455 142 -0.455 138 -0.455 139 
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Figure 1. Non-relativistic (dashed line) and relativistic (solid line) band structures for a 
particle of mass m = 0.5 in the potential V ( x )  = V, cos 2x, with V, = 0.2. The number of 
points in the subdivision is N = 200. 

and relativistic particles in the case Vo = 0.2 and N = 200. As expected, marked differen- 
ces appear because the potential is rather strong ( V o = 2 m / 5  being of order of the 
rest-mass energy of the particle). We observe that relativity causes the shrinkage of 
the spectrum (for more details see Mendez and Dominguez-Adame 1991 and references 
therein). In contrast to the continued fraction approach to relativistic band structures 
of MCndez and Dominguez-Adame (1991), our transfer matrix method does not require 
the potential to be symmetric around atomic positions. Therefore, this method is 
applicable to more general periodic potentials, often used in semiconductor super- 
lattices calculations (sawtooth potentials, etc). 

5. Conclusions 

In this paper we have demonstrated that the dynamics of both non-relativistic and 
relativistic particles in general one-dimensional potentials is equivalent to the dynamics 
of particles in an array of 8-function potentials. In our opinion this is an interesting 
result because this equivalence explains why the Kronig-Penney model (periodic, 
quasipetiodic or random) works so well in explaining the electron behaviour in real 
lattices. In the case of a general periodic potential we have found that the dispersion 
relation is the same as that of a generalized Kronig-Penney model. The transfer matrix 
technique allows us to obtain a very simple recursive method to compute E ( k ) .  The 
computation time and storage are much reduced so that this method may be imple- 
mented by most programmable pocket calculators. In addition, it possesses the advan- 
tage that other numerical methods widely used in tight-binding calculations (recall 
that (6) and (21) are essentially identical to a tight-binding Hamiltonian) may he 
extended straightforwardly to be applied in our calculations. In particular, the negative- 
eigenvalue theory of Dean (1972) provides a simple scheme for the determination of 
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the density of states without the knowledge of the dispersion relation inside allowed 
bands. 
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